Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
2.
Sci Total Environ ; 838(Pt 1): 155884, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2328273

ABSTRACT

Public health departments such as CDC and California Department of Public Health (CA-DPH) advise HEPA-purifiers to limit transmission of SARS-CoV-2 indoor spaces. CA-DPH recommends air exchanges per hour (ACH) of 4-6 air for rooms with marginal ventilation and 6-12 in classrooms often necessitating multiple HEPA-purifiers per room, unaffordable in under-resourced community settings. Pressure to seek cheap, rapid air filtration resulted in proliferation of lower-cost, Do-It-Yourself (DIY) air purifiers whose performance is not well characterized compared to HEPA-purifiers. Primary metrics are clean air delivery rate (CADR), noise generated (dBA), and affordability ($$). CADR measurement often requires hard-to-replicate laboratory experiments with generated aerosols. We use simplified, low-cost measurement tools of ambient aerosols enabling scalable evaluation of aerosol filtration efficiencies (0.3 to 10 µm), estimated CADR, and noise generation to compare 3 HEPA-purifiers and 9 DIY purifier designs. DIY purifiers consist of one or two box fans coupled to single MERV 13-16 filters (1″-5″ thick) or quad filters in a cube. Accounting for reduced filtration efficiency of MERV 13-16 filters (versus HEPA) at the most penetrating particle size of 0.3 µm, estimated CADR of DIY purifiers using 2″ (67%), 4″ (66%), and 5″ (85%) filters at lowest fan speed was 293 cfm ($35), 322 cfm ($58), and 405 cfm ($120) comparable to best-in-class, low-noise generating HEPA-purifier running at maximum speed with at 282 cfm ($549). Quad filter designs, popularly known Corsi-Rosenthal boxes, achieved gains in estimated CADR below 80% over single filter designs, less than the 100% gain by adding a second DIY purifier. Replacing one of the four filters with a second fan resulted in gains of 125%-150% in estimated CADR. Tested DIY alternatives using lower-efficiency, single filters compare favorably to tested HEPA-purifiers in estimated CADR, noise generated at five to ten times lower cost, enabling cheap, rapid aerosol removal indoors.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Aerosols , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Dust , Humans , Pandemics/prevention & control , SARS-CoV-2
3.
Environ Sci Pollut Res Int ; 30(29): 73812-73824, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2326412

ABSTRACT

Over 766 million people have been infected by coronavirus disease 2019 (COVID-19) in the past 3 years, resulting in 7 million deaths. The virus is primarily transmitted through droplets or aerosols produced by coughing, sneezing, and talking. A full-scale isolation ward in Wuhan Pulmonary Hospital is modeled in this work, and water droplet diffusion is simulated using computational fluid dynamics (CFD). In an isolation ward, a local exhaust ventilation system is intended to avoid cross-infection. The existence of a local exhaust system increases turbulent movement, leading to a complete breakup of the droplet cluster and improved droplet dispersion inside the ward. When the outlet negative pressure is 4.5 Pa, the number of moving droplets in the ward decreases by approximately 30% compared to the original ward. The local exhaust system could minimize the number of droplets evaporated in the ward; however, the formation of aerosols cannot be avoided. Furthermore, 60.83%, 62.04%, 61.03%, 60.22%, 62.97%, and 61.52% of droplets produced through coughing reached patients in six different scenarios. However, the local exhaust ventilation system has no apparent influence on the control of surface contamination. In this study, several suggestions with regards to the optimization of ventilation in wards and scientific evidence are provided to ensure the air quality of hospital isolation wards.


Subject(s)
Air Filters , COVID-19 , Cross Infection , Humans , Cough , Hospitals , Vehicle Emissions , Ventilation
4.
IET Nanobiotechnol ; 17(4): 289-301, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2299400

ABSTRACT

The outbreak of COVID-19 disease, the cause of severe acute respiratory syndrome, is considered a worldwide public health concern. Although studies indicated that the virus could spread through respiratory particles or droplets in close contact, current research have revealed that the virus stays viable in aerosols for several hours. Numerous investigations have highlighted the protective role of air purifiers in the management of COVID-19 transmission, however, there are still some doubts regarding the efficiency and safety of these technologies. According to those observations, using a proper ventilation system can extensively decrease the spread of COVID-19. However, most of those strategies are currently in the experimental stages. This review aimed at summarising the safety and effectiveness of the recent approaches in this field including using nanofibres that prevent the spread of airborne viruses like SARS-CoV-2. Here, the efficacy of controlling COVID-19 by means of combining multiple strategies is comprehensively discussed.


Subject(s)
Air Filters , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Respiratory Aerosols and Droplets , Nanotechnology
5.
ACS Appl Mater Interfaces ; 15(17): 20977-20986, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2297837

ABSTRACT

According to clinical case reports, bacterial co-infection with COVID-19 can significantly increase mortality, with Staphylococcus aureus (S. aureus) being one of the most common pathogens causing complications such as pneumonia. Thus, during the pandemic, research on imparting air filters with antibacterial properties was actively initiated, and several antibacterial agents were investigated. However, air filters with inorganic nanostructures on organic nanofibers (NFs) have not been investigated extensively. This study aimed to demonstrate the efficiency of electropolarized poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) NFs decorated with Li-doped ZnO nanorods (NRs) to improve the filtering ability and antibacterial activity of the ultrathin air filter. The surfactant was loaded onto the ZnO─known for its biocompatibility and low toxicity─nanoparticles (NPs) and transferred to the outer surface of the NFs, where Li-doped ZnO NRs were grown. The Li-doped ZnO NR-decorated NF effectively enhanced the physical filtration efficiency and antibacterial properties. Additionally, by exploiting the ferroelectric properties of Li-doped ZnO NRs and PVDF-TrFE NFs, the filter was electropolarized to increase its Coulombic interaction with PMs and S. aureus. As a result, the filter exhibited a 90% PM1.0 removal efficiency and a 99.5% sterilization rate against S. aureus. The method proposed in this study provides an effective route for simultaneously improving the air filter performance and antibacterial activity.


Subject(s)
Air Filters , COVID-19 , Nanofibers , Zinc Oxide , Humans , Nanofibers/chemistry , Staphylococcus aureus , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Lithium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
Epidemiol Health ; 42: e2020049, 2020.
Article in English | MEDLINE | ID: covidwho-2273851

ABSTRACT

Air filtration in various implementations has become a critical intervention in managing the spread of coronavirus disease 2019 (COVID-19). However, the proper deployment of air filtration has been hampered by an insufficient understanding of its principles. These misconceptions have led to uncertainty about the effectiveness of air filtration at arresting potentially infectious aerosol particles. A correct understanding of how air filtration works is critical for further decision-making regarding its use in managing the spread of COVID-19. The issue is significant because recent evidence has shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can remain airborne longer and travel farther than anticipated earlier in the COVID-19 pandemic, albeit with diminishing concentrations and viability. While SARS-CoV-2 virions are around 60-140 nm in diameter, larger respiratory droplets and air pollution particles (>1 µm) have been found to harbor the virions. Removing particles that could carry SARS-CoV-2 from the air is possible using air filtration, which relies on the natural or mechanical movement of air. Among various types of air filters, high-efficiency particle arrestance (HEPA) filters have been recommended. Other types of filters are less or more effective and, correspondingly, are easier or harder to move air through. The use of masks, respirators, air filtration modules, and other dedicated equipment is an essential intervention in the management of COVID-19 spread. It is critical to consider the mechanisms of air filtration and to understand how aerosol particles containing SARS-CoV-2 virions interact with filter materials to determine the best practices for the use of air filtration to reduce the spread of COVID-19.


Subject(s)
Air Filters/virology , Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Aerosols , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2
7.
Biomater Adv ; 149: 213390, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2288725

ABSTRACT

The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.


Subject(s)
Air Filters , COVID-19 , Nanofibers , Humans , COVID-19/prevention & control , SARS-CoV-2 , Filtration
8.
Epidemiol Infect ; 151: e21, 2023 01 18.
Article in English | MEDLINE | ID: covidwho-2221729

ABSTRACT

SARS-CoV-2 has severely affected capacity in the National Health Service (NHS), and waiting lists are markedly increasing due to downtime of up to 50 min between patient consultations/procedures, to reduce the risk of infection. Ventilation accelerates this air cleaning, but retroactively installing built-in mechanical ventilation is often cost-prohibitive. We investigated the effect of using portable air cleaners (PAC), a low-energy and low-cost alternative, to reduce the concentration of aerosols in typical patient consultation/procedure environments. The experimental setup consisted of an aerosol generator, which mimicked the subject affected by SARS-CoV-19, and an aerosol detector, representing a subject who could potentially contract SARS-CoV-19. Experiments of aerosol dispersion and clearing were undertaken in situ in a variety of rooms with two different types of PAC in various combinations and positions. Correct use of PAC can reduce the clearance half-life of aerosols by 82% compared to the same indoor-environment without any ventilation, and at a broadly equivalent rate to built-in mechanical ventilation. In addition, the highest level of aerosol concentration measured when using PAC remains at least 46% lower than that when no mitigation is used, even if the PAC's operation is impeded due to placement under a table. The use of PAC leads to significant reductions in the level of aerosol concentration, associated with transmission of droplet-based airborne diseases. This could enable NHS departments to reduce the downtime between consultations/procedures.


Subject(s)
Air Filters , COVID-19 , Humans , SARS-CoV-2 , State Medicine , Respiratory Aerosols and Droplets , Hospitals
10.
PLoS One ; 18(1): e0280243, 2023.
Article in English | MEDLINE | ID: covidwho-2197144

ABSTRACT

The importance of air purifiers has increased in recent years, especially with the "coronavirus disease 2019" pandemic. The efficacy of air purifiers is usually determined under laboratory conditions before widespread application. The standard procedure for testing depends on virus cultivation and titration on cell culture. This, however, requires several days to deliver results. The aim of this study was to establish a rapid molecular assay which can differentiate between intact infectious and distorted non-infectious virus particles. Feline Coronavirus was selected as model for screening. First the samples were pretreated with enzymes (universal nuclease and RNase cocktail enzyme mixture) or viability dye (propidium monoazide) to eliminate any free nucleic acids. The ribonucleic acid (RNA) from intact virus was released via magnetic beads-based extraction, then the amount of the RNA was determined using real-time reverse transcription polymerase chain reaction (RT-PCR) or reverse transcription recombinase-aided amplification (RT-RAA). All results were compared to the infectivity assay based on the calculation of the 50% tissue culture infectious dose (TCID50). The nuclease has eliminated 100% of the free Feline Coronavirus RNA, while propidium monoazide underperformed (2.3-fold decrease in free RNA). Both RT-RAA and real-time RT-PCR produced similar results to the infectivity assay on cell culture with limit of detection of 102 TCID50/mL. Two UV-C air purifiers with prosperities of 100% inactivation of the viruses were used to validate the established procedure. Both real-time RT-PCR and RT-RAA were able to differentiate between intact virus particles and free RNA. To conclude, this study revealed a promising rapid method to validate the efficacy of air purifiers by combining enzymatic pretreatment and molecular assays.


Subject(s)
Air Filters , Azides , Reverse Transcription , Real-Time Polymerase Chain Reaction/methods , RNA , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
11.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2155209

ABSTRACT

The worsening of air quality is an urgent human health issue of modern society. The outbreak of COVID-19 has made the improvement of air quality even more imperative, both for the general achievement of major health gains and to reduce the critical factors in the transmission of airborne diseases. Thus, the development of solutions for the filtration of airborne pollutants is pivotal. Electrospinning has gained wide attention as an effective fabrication technique for preparing ultrafine fibers which are specifically tailored for air filtration. Nevertheless, the utilization of harmful organic solvents is the major barrier for the large-scale applicability of electrospinning. The use of water-soluble synthetic polymers has attracted increasing attention as a 'green' solution in electrospinning. We reported an overview of the last five years of the scientific literature on the use of water-soluble synthetic polymers for the fabrication of multifunctional air filters layers. Most of recent studies have focused on polyvinyl alcohol (PVA). Various modifications of electrospun polymers have been also described. The use of water-soluble synthetic polymers can contribute to the scalability of electrospinning and pave the way to innovative applications. Further studies will be required to fully harness the potentiality of these 'greener' electrospinning processes.


Subject(s)
Air Filters , COVID-19 , Humans , Water , Masks , COVID-19/epidemiology , COVID-19/prevention & control , Polymers
12.
ACS Appl Mater Interfaces ; 14(45): 50543-50556, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2106314

ABSTRACT

The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bioinspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house-manufactured cellulose nanofiber mats (CNFMs), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize the release of pathogens. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or the total number of captured cells. The most promising materials, the liquid-coated HEPA, filters were then evaluated for their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a nonenveloped virus that attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of genomic material recovered compared to that of controls. In contrast, significantly more genomic material was recovered for SARS-CoV-2, the airborne, enveloped virus, which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from liquid-coated filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.


Subject(s)
Air Filters , COVID-19 , Viruses , Humans , Pandemics , SARS-CoV-2 , COVID-19/prevention & control , Bacteria , Dust , Polytetrafluoroethylene
13.
Indoor Air ; 32(10): e13110, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2084619

ABSTRACT

Airborne transmission of disease is of concern in many indoor spaces. Here, aerosol dispersion and removal in an unoccupied 4-bed hospital room were characterized using a transient aerosol tracer experiment for 38 experiments covering 4 configurations of air purifiers and 3 configurations of curtains. NaCl particle (mass mean aerodynamic diameter ~3 µm) concentrations were measured around the room following an aerosol release. Particle transport across the room was 1.5-4 min which overlaps with the characteristic times for significant viral deactivation and gravitational settling of larger particles. Concentrations were close to spatially uniform except very near the source. Curtains resulted in a modest increase in delay and decay times, less so when combined with purifiers. The aerosol decay rate was in most cases higher than expected from the clean air delivery rate, but the reduction in steady-state concentrations resulting from air purifiers was less than suggested by the decay rates. Apparently, a substantial (and configuration-dependent) fraction of the aerosol is removed immediately, and this effect is not captured by the decay rate. Overall, the combination of curtains and purifiers is likely to reduce disease transmission in multi-patient hospital rooms.


Subject(s)
Air Filters , Air Pollution, Indoor , Humans , Air Pollution, Indoor/analysis , Aerosols , Patients' Rooms , Hospitals
14.
Int J Environ Res Public Health ; 19(18)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2047304

ABSTRACT

This study introduces a principle that unifies two experimental methods for evaluating airborne indoor virus-transmissions adapted to several ventilation measures. A first-time comparison of mechanical/natural ventilation and air purification with regard to infection risks is enabled. Effortful computational fluid dynamics demand detailed boundary conditions for accurate calculations of indoor airflows, which are often unknown. Hence, a suitable, simple and generalized experimental set up for identifying the spatial and temporal infection risk for different ventilation measures is more qualified even with unknown boundary conditions. A trace gas method is suitable for mechanical and natural ventilation with outdoor air exchange. For an accurate assessment of air purifiers based on filtration, a surrogate particle method is appropriate. The release of a controlled rate of either trace gas or particles simulates an infectious person releasing virus material. Surrounding substance concentration measurements identify the neighborhood exposure. One key aspect of the study is to prove that the requirement of concordant results of both methods is fulfilled. This is the only way to ensure that the comparison of different ventilation measures described above is reliable. Two examples (a two-person office and a classroom) show how practical both methods are and how the principle is applicable for different types and sizes of rooms.


Subject(s)
Air Filters , Air Pollution, Indoor , Aerosols , Air Pollution, Indoor/analysis , Filtration , Humans , Ventilation
15.
Indoor Air ; 32(9): e13103, 2022 09.
Article in English | MEDLINE | ID: covidwho-2052595

ABSTRACT

The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 µm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Aircraft , COVID-19/prevention & control , Dust , Filtration , Humans , Polymers , Respiratory Aerosols and Droplets
16.
Indoor Air ; 32(9): e13109, 2022 09.
Article in English | MEDLINE | ID: covidwho-2042835

ABSTRACT

Studies about the identification of SARS-CoV-2 in indoor aerosols have been conducted in hospital patient rooms and to a lesser extent in nonhealthcare environments. In these studies, people were already infected with SARS-CoV-2. However, in the present study, we investigated the presence of SARS-CoV-2 in HEPA filters housed in portable air cleaners (PACs) located in places with apparently healthy people to prevent possible outbreaks. A method for detecting the presence of SARS-CoV-2 RNA in HEPA filters was developed and validated. The study was conducted for 13 weeks in three indoor environments: school, nursery, and a household of a social health center, all in Ciudad Real, Spain. The environmental monitoring of the presence of SARS-CoV-2 was conducted in HEPA filters and other surfaces of these indoor spaces for a selective screening in asymptomatic population groups. The objective was to limit outbreaks at an early stage. One HEPA filter tested positive in the social health center. After analysis by RT-PCR of SARS-CoV-2 in residents and healthcare workers, one worker tested positive. Therefore, this study provides direct evidence of virus-containing aerosols trapped in HEPA filters and the possibility of using these PACs for environmental monitoring of SARS-CoV-2 while they remove airborne aerosols and trap the virus.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/prevention & control , Humans , RNA, Viral , Respiratory Aerosols and Droplets , SARS-CoV-2
17.
Int J Environ Res Public Health ; 19(16)2022 08 22.
Article in English | MEDLINE | ID: covidwho-2023678

ABSTRACT

Air purifiers should pay much attention to hospital-associated infections, but the role of a single air purifier is limited. The goal of this study was to evaluate the effectiveness of the combined application of the nonequilibrium positive and negative oxygen ion purifier (PNOI) and the high-efficiency particulate air filter (HEPA) on a complex, polluted environment. Two of the better performing purifiers were selected before the study. The efficacy of their use alone and in combination for purification of cigarette particulate matter (PM), Staphylococcus albicans, and influenza virus were then evaluated under a simulated contaminated ward. PNAI and HEPA alone are deficient. However, when they were combined, they achieved 98.44%, 99.75%, and 100% 30 min purification rates for cigarette PM, S. albus, and influenza virus, respectively. The purification of pollution of various particle sizes and positions was optimized and reduced differentials, and a subset of airborne influenza viruses is inactivated. Furthermore, they were superior to ultraviolet disinfection for microbial purification in air. This work demonstrates the strong purification capability of the combined application of these two air purifiers for complex air pollution, which provides a new idea for infection control in medical institutions.


Subject(s)
Air Filters , Air Pollutants , Air Pollution, Indoor , Orthomyxoviridae , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Bacteria , Dust , Hospitals , Particulate Matter/analysis
18.
Indoor Air ; 32(8): e13099, 2022 08.
Article in English | MEDLINE | ID: covidwho-2005271

ABSTRACT

Particle size removal efficiencies for 0.1-1.0 µm ( PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ ) and 0.3-1.0 µm ( PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ ) diameter of Minimum Efficiency Reporting Value (MERV) filters, an electrostatic enhanced air filter (EEAF), and their two-stage filtration systems were evaluated. Considering the most penetrating particle size was 0.1-0.4 µm particulate matter (PM), the PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ as an evaluation parameter deserves more attention during the COVID-19 pandemic, compared to the PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ . The MERV 13 filters were recommended for a single-stage filtration system because of their superior quality factor (QF) compared to MERV 6, MERV 8, MERV 11 filters, and the EEAF. Combined MERV 8 + MERV 11 filters have the highest QF compared to MERV 6 + MERV 11 filters and EEAF + MERV 11 filters; regarding 50% of PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ as the filtration requirements of two-stage filtration systems, the MERV 8 + MERV 11 filtration system can achieve this value at 1.0 m/s air velocity, while PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ values were lower than 50% at 1.5 m/s and 2.0 m/s. EEAF obtained a better PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ in the full-recirculated test rig than in the single-pass mode owing to active ionization effects when EEAF was charged by alternating current.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Air Conditioning , Air Pollution, Indoor/analysis , Filtration , Heating , Humans , Pandemics , Respiration , Ventilation
19.
ACS Appl Mater Interfaces ; 14(21): 24850-24855, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1852371

ABSTRACT

The demand for improved indoor air quality, especially during the pandemic of Covid-19, has led to renewed interest in antiviral and antibacterial air-conditioning systems. Here, air filters of vehicles made of nonwoven polyester filter media were sonochemically coated with CuO nanoparticles by a roll-to-roll coating method. The product, aimed at providing commuters with high air quality, showed good stability and mechanical properties and potent activity against Escherichia coli and Staphylococcus aureus bacteria, H1N1 influenza, and two SARS-CoV-2 variants. The filtering properties of a coated filter were tested, and they were similar to those of the uncoated filter. Leaching tests as a function of airflow were conducted, and the main outcome was that the coating was stable and particles were not detached from the coated media. Extension to other air-conditioning systems was straightforward.


Subject(s)
Air Filters , COVID-19 , Influenza A Virus, H1N1 Subtype , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Automobiles , Copper , Escherichia coli , Humans , SARS-CoV-2
20.
Adv Colloid Interface Sci ; 303: 102653, 2022 May.
Article in English | MEDLINE | ID: covidwho-1838648

ABSTRACT

COVID-19 is caused via the SARS-CoV-2 virus, a lipid-based enveloped virus with spike-like projections. At present, the global epidemic of COVID-19 continues and waves of SARS-CoV-2, the mutant Delta and Omicron variant which are associated with enhanced transmissibility and evasion to vaccine-induced immunity have increased hospitalization and mortality, the biggest challenge we face is whether we will be able to overcome this virus? On the other side, warm seasons and heat have increased the need for proper ventilation systems to trap contaminants containing the virus. Besides, heat and sweating accelerate the growth of microorganisms. For example, medical staff that is in the front line use masks for a long time, and their facial sweat causes microbes to grow on the mask. Nowadays, efficient air filters with anti-viral and antimicrobial properties have received a lot of attention, and are used to make ventilation systems or medical masks. A wide range of materials plays an important role in the production of efficient air filters. For example, metals, metal oxides, or antimicrobial metal species that have anti-viral and antimicrobial properties, including Ag, ZnO, TiO2, CuO, and Cu played a role in this regard. Carbon nanomaterials such as carbon nanotubes, graphene, or derivatives have also shown their role well. In addition, natural materials such as biopolymers such as alginate, and herbal extracts are employed to prepare effective air filters. In this review, we summarized the utilization of diverse materials in the preparation of efficient air filters to apply in the preparation of medical masks and ventilation systems. In the first part, the employing metal and metal oxides is examined, and the second part summarizes the application of carbon materials for the fabrication of air filters. After examination of the performance of natural materials, challenges and progress visions are discussed.


Subject(s)
Air Filters , Anti-Infective Agents , COVID-19 , Nanotubes, Carbon , Aerosols , COVID-19/prevention & control , Humans , Masks , Oxides , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL